La dataesfera como hiperobjeto: hacia una crítica de sus implicaciones ontoepistémicas.

Pedro Cerruti

Resumen


Este artículo aborda la dataesfera como un hiperobjeto que transforma las condiciones ontológicas y epistemológicas de la experiencia en la era digital. Se analiza cómo los entornos tecno-informáticos modifican la subjetivación, la sociabilidad y la producción de saber mediante la recolección masiva de datos. Se contrastan dos enfoques: el positivismo digital, centrado en la correlación y la predicción sin mediación causal; y los Estudios Críticos de Datos, que cuestionan la supuesta neutralidad de los datos y subrayan su carácter situado y su inscripción en relaciones de poder. Finalmente, se propone una renovación crítica fundamentada en ontologías no antropocéntricas —como las orientadas a objetos, el nuevo materialismo o la teoría del ensamblaje—, que disuelven la centralidad del sujeto humano y permiten repensar la agencia distribuida en redes sociotécnicas. Estas ontologías permiten abordar la dataesfera como un hiperobjeto: una entidad difusa, masiva y ubicua, cuya escala y complejidad exceden las capacidades representacionales convencionales. Desde esta perspectiva, se plantea la necesidad de renovar los marcos analíticos de las ciencias sociales para dar cuenta de fenómenos que reconfiguran radicalmente la relación entre conocimiento, tecnología y mundo.

Palabras clave: dataesfera, hiperobjeto, crítica, ontología, epistemología




THE DATASPHERE AS A HYPEROBJECT: CRITIQUING ITS ONTO-EPISTEMIC IMPLICATIONS

Abstract
This article explores the datasphere as a hyperobject that reshapes the ontological and epistemological conditions of experience in the digital age. It examines how techno-informatic environments transform subjectivation, sociability, and knowledge production through large-scale data collection and analysis. Two main approaches are contrasted: digital positivism, which privileges correlation and prediction without causal explanation; and Critical Data Studies, which interrogate the presumed neutrality of data by emphasizing their situatedness and embedded power relations. The article ultimately proposes a critical renewal grounded in non-anthropocentric ontologies —such as object-oriented ontology, new materialism, and assemblage theory— which decenter the human subject and conceptualize agency as distributed across sociotechnical networks. These frameworks allow us to approach the datasphere as a hyperobject: a vast, diffuse, and entangled entity whose scale and complexity overwhelm conventional modes of representation. From this perspective, the article calls for an overhaul of social science categories to address phenomena that fundamentally reshape the nexus between knowledge, technology, and the world.

Key words: datasphere, hyperobjet, critique, ontology, epistemology


https://id.caicyt.gov.ar/ark:/s16668979/yabrpe7xa

Texto completo:

PDF


DOI: https://doi.org/10.62174/arg.2025.10809

Referencias


Anderson, C. (2008). The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired Magazine.

Barad, K. (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press.

Barad, K. (2012). On Touching - The Inhuman That Therefore I Am. Differences, 23(3), 206–223. https://doi.org/10.1215/10407391-1892943

Benjamin, W. (1987). Dirección única. Alfaguara.

Bennett, J. (2010). Vibrant Matter: A Political Ecology of Things. Duke University Press.

Beresñak, F. (2017). El imperio científico: Investigaciones político-espaciales. Miño y Dávila.

Bonneuil, C. y Fressoz, J. B. (2016). The Shock of the Anthropocene: The Earth, History and Us. Verso Books.

Boyd, D. y Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878

Bratton, B. (2015). The Stack: On Software and Sovereignty. MIT Press.

Bryant, L. R. (2011). The Democracy of Objects. Open Humanities Press.

Bucher, T. (2018). If... Then: Algorithmic Power and Politics. Oxford University Press.

Castells, M. (2010). The Rise of the Network Society. Wiley-Blackwell.

Chandler, D. (2015). A World without Causation: Big Data and the Coming of Age of Posthumanism. Millennium, 43(3), 833–851. DOI:10.1177/0305829815576817

Chen, X. (2024). Investigation on the Self-Improving Algorithm of TikTok Based on Extensive User Interactions. En Proceedings of the 1st International Conference on Engineering Management, Information Technology and Intelligence (pp.227-233).

Clark, N. (2011). Inhuman Nature: Sociable Life on a Dynamic Planet. Sage.

Cohen, J. E. (2012). Configuring the Networked Self. Yale University Press.

Costa, F. (2022). Tecnoceno. Algoritmos, biohackers y nuevas formas de vida. Taurus.

Couldry, N. y Mejias, U. A. (2019). The Costs of Connection: How Data is Colonizing Human Life and Appropriating It for Capitalism. Stanford University Press.

Crawford, K. (2021). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.

D'Ignazio, C. y Klein, L. F. (2020). Data Feminism. MIT Press.

De Vries, A. (2021). Bitcoin's Growing Energy Problem. Joule, 4(7), 1403–1406.

DeLanda, M. (2006). A New Philosophy of Society: Assemblage Theory and Social Complexity. Continuum.

DeLanda, M. (2016). Assemblage Theory. Edinburgh University Press.

Deleuze, G. y Guattari, F. (2002). Mil mesetas. Capitalismo y esquizofrenia 2. Pre-Textos.

Dencik, L., Hintz, A., Redden, J. y Treré, E. (2022). Data Justice. Sage.

Domingos, P. (2015). The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, Hachette.

Floridi, L. (2014). The Fourth Revolution: How the Infosphere is Reshaping Human Reality. Oxford University Press.

Floridi, L. y Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds and Machines, 30, 681–694.

Frodeman, R. (2013). Sustainable Knowledge: A Theory of Interdisciplinarity. Palgrave Macmillan.

Gillespie, T. (2014). The relevance of algorithms. En T. Gillespie, P. J. Boczkowski & K. A. Foot (Eds.), Media Technologies: Essays on Communication, Materiality, and Society (pp. 167-194). MIT Press.

Gillespie, T. (2018). Custodians of the Internet: Platforms, Content Moderation, and the Hidden Decisions That Shape Social Media. Yale University Press.

Gómez Cruz, E. y Rivas, S. (2021). Big Data from the South(s): Beyond Data Universalism. Sur. International Journal on Human Rights, 18(33), 177–193.

Haraway, D. (1988). Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective. Feminist Studies, 14(3), 575–599. https://doi.org/10.2307/3178066

Haraway, D. (2016). Staying with the Trouble: Making Kin in the Chthulucene. Duke University Press.

Harman, G. (2015). Hacia el realismo especulativo. Ensayos y conferencias. Caja Negra.

Harman, G. (2018). Object-Oriented Ontology: A New Theory of Everything. Penguin Books.

Jordan, M. I. y Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf

Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage.

Kitchin, R. y Lauriault, T. P. (2014). Towards critical data studies: Charting and unpacking data assemblages and their work. The Programmable City. Working Paper No. 2. University of Nebraska Press.

Klug, D., Qin, Y., Evans, M. y Kaufman, G. (junio de 2021). Trick and Please: A Mixed-Method Study On User Assumptions About the TikTok Algorithm. 13th ACM Web Science Conference 2021. United Kingdom. https://doi.org/10.1145/3447535.3462512

Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern. Critical Inquiry, 30(2), 225–248. https://doi.org/10.1086/421123

Latour, B. (2005). Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford University Press.

Latour, B. (2007). Nunca fuimos modernos. Siglo XXI.

Leonelli, S. (2014). What difference does quantity make? On the epistemology of Big Data in biology. Big Data & Society, 1(1), 1-11. https://doi.org/10.1177/2053951714534395

Leonelli, S. (2016). Data-Centric Biology: A Philosophical Study. University of Chicago Press.

Leurs, K. (2017). Feminist Data Studies: Using Digital Methods for Ethical, Reflexive and Situated Praxis. Feminist Review, 115(1), 130–154. https://doi.org/10.1057/s41305-017-0043-1

Lowrie, I. (2017). Algorithmic rationality: Epistemology and efficiency in the data sciences. Big Data & Society, 4(2), 1-13. https://doi.org/10.1177/2053951717700925

Ludueña Romandini, F. (2024). Imperium Technologicum. La teología política digital y la nueva mitología planetaria. Miño y Dávila.

Lyon, D. (2018). The Culture of Surveillance: Watching as a Way of Life. Polity.

Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J. C., Sellitto, V., Shoham, Y., Clark, J. y Greer, D. (2023). The AI Index Report 2023. Stanford University, Institute for Human-Centered AI. Disponible en: https://hai.stanford.edu/assets/files/hai_ai-index-report_2023.pdf

Mattern, S. (2017). Code and Clay, Data and Dirt: Five Thousand Years of Urban Media. University of Minnesota Press.

Mayer-Schönberger, V. y Cukier, K. (2013). Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt.

Meillassoux, Q. (2008). Después de la finitud: ensayo sobre la necesidad de la contingencia. Caja Negra.

Mirowski, P. (2011). Science-Mart: Privatizing American Science. Harvard University Press.

Montag, C., Yang, H. y Elhai, J. D. (2021). On the Psychology of TikTok Use: A First Glimpse from Empirical Findings. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.641673

Morton, T. (2013). Hyperobjects: Philosophy and Ecology after the End of the World. University of Minnesota Press.

Narayanan, A., Bonneau, J., Felten, E., Miller, A. y Goldfeder, S. (2016). Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press.

Nissenbaum, H. (2010). Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press.

Padua, D. (2021). The Digital Ecosystem. En Digital Cultural Transformation. Innovation, Technology, and Knowledge Management (pp. 89-136). Springer.

Parente, D. (2016). Artefactos, cuerpo y ambiente: exploraciones sobre filosofía de la técnica. La Bola.

Pariser, E. (2011). The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. Penguin Books.

Parks, L., & Starosielski, N. (Eds.). (2015). Signal Traffic: Critical Studies of Media Infrastructures. Urbana: University of Illinois Press.

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press.

Kaplan, A. (Ed.). (2022). Digital Transformation and Disruption of Higher Education. Cambridge University Press.

Provost, F. y Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Media.

D'Agostino, M. y Durante, M. (Eds.). (2018). Philosophy & Technology [Special Issue on The Governance of Algorithms], 31(4).

Sadin, É. (2018). La inteligencia artificial o el desafío del siglo. Anatomía de un antihumanismo radical. Caja Negra.

Sadin, É. (2022). L'Humanité augmentée: La vie à l'heure des intelligences artificielles. L'échappée.

Sassen, S. (2021). The Global City: New York, London, Tokyo. Princeton University Press.

Seaver, N. (2017). Algorithms as culture: Some tactics for the ethnography of algorithmic systems. Big Data & Society, 4(2), 1-19. https://doi.org/10.1177/2053951717738104

Sloterdijk, P. (2008). ¿Dónde estamos, cuando escuchamos música? En Extrañamiento del mundo. Pre-textos.

Sloterdijk, P. (2014). Esferas I: Burbujas. Microsferología. Siruela.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. y Ludwig, C. (2015). The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, 2(1), 81–98. https://doi.org/10.1177/2053019614564785

Taylor, L. (2017). What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4(2). https://doi.org/10.1177/2053951717736335

Terranova, T. (2000). Free Labor: Producing Culture for the Digital Economy. Social Text, 18(2), 33-58. https://doi.org/10.1215/01642472-18-2_63-33

Terranova, T. (2004). Network Culture: Politics for the Information Age. Pluto Press.

United Nations Environment Programme. (2020). Emissions Gap Report 2020. UNEP.

Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197–208. https://doi.org/10.24908/ss.v12i2.4776

Weller, M. (2011). The Digital Scholar: How Technology Is Transforming Scholarly Practice. Bloomsbury.

Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. Public Affairs.


Enlaces refback

  • No hay ningún enlace refback.



Estadísticas
Visitas al Resumen:84
PDF:10


Copyright (c) 2025 Pedro Cerruti